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An algorithm for constructing a general solution of an oscillatory system without determining the eigenvectors, which are the 
main source of the computational instability of classical methods, is proposed and justified. Souriau's algorithm [1-3], developed 
for solving systems of linear algebraic equations, is extended to the construction of a general solution of systems of linear ordinary 
differential equations. The adjoint matrix, consisting of the cofactors of the elements of the initial matrix, and the representation 
of the characteristic polynomial in terms of the characteristic adjoint matrix, play an important role here. The algorithm consists 
of simple algebraic operations, in addition to the numerical integration of a single differential equation, called the characteristic 
equation. �9 2006 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Linear oscillations of mechanical systems are described by the second-order matrix linear ordinary 
differential equation 

MJc+ CYr + K x  = F (1.1) 

Here  x is an n-dimensional vector of the configuration variables, M, C and K are n x n matrices of the 
masses and the damping and stiffness coefficients, F are the external forces, and a dot denotes 
differentiation with respect to time. 

The main difficulty of classical methods of constructing a general solution of such systems is calculating 
the eigenvectors. Small deviations of the matrix coefficients M, C and K can lead to considerable 
deviations of the components  of the eigenvectors and to computational  instability. 

The basis of Souriau's algorithm [1-3], developed to solve systems of linear algebraic equations, is 
the idea of an adjoint matrix. An extension of this algorithm to construct a general solution of systems 
of linear ordinary differential equations is proposed. The advantage of this method is that it avoids the 
need to calculate eigenvalues and eigenvectors. Moreover,  for a dissipative system it is not necessary 
to satisfy the specific properties of the matrix C [4] and symmetry, as well as the positiveness of  the 
mass and stiffness matrices. 

We will first give a brief description of Souriau's algorithm for linear algebraic equations, and we 
will then extend it to first-order linear matrix ordinary differential equations and then to mechanical 
systems described by second-order linear matrix ordinary differential equations. Finally, we will consider 
a system with external excitation. 

tPrikl. Mat. Mekh. Vol. 69, No. 6, pp. 935-941, 2005. 
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2. S O U R I A U ' S  A L G O R I T H M  

We will introduce some fundamental definitions and notation which will be required later. Suppose 
is a scalar andA is an n • n matrix, / is  the identity matrix, adjA is the adjoint matrix, i.e. the transposed 
matrix of the cofactors of the elements of the matrix A, L / - A  is the characteristic matrix, whose 
determinant is equal to the characteristic polynomial P(~), and its adjoint matrix is called the 
characteristic adjoint matrix O(~,) 

P(~,) = det(~,I-A) = ko~,n+kl~,n-l+ ... + k n _ l ~ + k n  

Q(~,) = adj(~,l-A) = ~,n- lBo+~,n-2Bl+. . .  +~,Bn_2+Bn_ 1 

k o = 1, k n = (-1)ndetA, B o = I, Bn_ 1 = (-1)n-ladjA 

The algorithm, which is an improvement of Le Verrier's method [5] and which enables one to calculate 
simultaneously the scalars ki and the matrices Bi, was proposed by Souriau in 1948 and verified on the 
first computers in the USA. Later this algorithm was sometimes attributed to Faddeev [6] or Frame 
[7]. 

The algorithm is based on the property A adjA = IdetA, which relates the adjoint matrix and 
determinant, and on the relation between the derivative of the determinant and the characteristic adjoint 
matrix (a prime denotes a derivative with respect to ~,) 

( k I - A ) Q ( 3 , )  = P(k ) I ,  P'(~,) = trQ(~,) (2.1) 

Equating the coefficients of like powers of ~, on the left and right sides of relations (2.1), we arrive 
at the following recurrence formulae [2] of the algorithm 

trB i 
B o = I, Ai = AB i - I '  ki = n - i '  Bi = Ai + kil; i = 1 . . . . .  n 

3. S O L U T I O N  OF T H E  SYSTEM OF D I F F E R E N T I A L  E Q U A T I O N S  
W I T H  F I R S T - O R D E R  D E R I V A T I V E S  

Suppose the linear matrix ordinary differential equation has the form 

:~ = A x  (3.1) 

To construct a solution we calculate the coefficients k i of the characteristic polynomial and the matrix 
coefficients B i of the characteristic adjoint matrix. The first of relations (2.1) is the key one in Souriau's 
algorithm. Substituting the operator d/dt instead of the variable ~,, we obtain 

(I  d -  A ) Q ( d )  = I P ( d )  

and suppose ~(t) is a particular scalar solution of the ordinary differential equation 

[ d )  n d~n-_ii~t(t) P 7(t) = Z kiT(n-i) = O, 7 (n-i) = (3.2) 
i = 0  

Then the matrix function 

n - 1  

o, t ,  . z , , , ' n  i " , , ,  
i = 0  

(3.3) 

is a solution of the matrix ordinary differential equation 

= Ate(t) 
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By virtue of this property, the linear ordinary differential equation (3.2) will be called the characteristic 
ordinary differential equation for ordinary differential equation (3.1). 

In order that the matrix ~(t) should be exactly equal to the exponential function e At, it is necessary 
that ~(0) = I. By virtue of the equality B0 = I and Eq. (3.3), to solve the linear ordinary differential 
equation (3.2) we must choose the initial conditions 

y ( " - : ) ( O )  = I, y (" -~ ) (O)  . . . . .  y(~)(O) = y (O)  = 0 (3.4) 

With this choice of the initial conditions for the function y(t) the general solution of ordinary 
differential equation (3.1) can be written in the form 

x ( t )  = 0(t)x 0, x(0) = x 0 (3.5) 

The solution Y(0 of characteristic ordinary differential equation (3.2) is satisfactorily obtained only 
in the part [0, h] of the specified interval of integration. In the remaining part, the exponential function 
~(t) is calculated using matrix multiplication, based on the property 

~ ( p t )  = ~P(t)  (3.6) 

Thus, the algorithm for obtaining a general solution of a system of ordinary differential equations 
of the form (3.1) consists of the following steps. 

1. Calculate k/and B i using Souriau's algorithm. 
2. Calculate the function l'(t) by integrating ordinary differential equation (3.2) with initial conditions 

(3.4) in a small time interval [0, h]. 
3. Tabulate the matrix function ~p using formula (3.3) in the time interval [0, h]. 
4. Extend the tabulation region 3 to [0, ph] using property (3.6). 
5. Tabulate the solution (3.5). 
This algorithm can easily be extended to ordinary differential equations of the form A 2  + Bx  = 0 

with characteristic matrix L4 + B. 

4. FREE OSCILLATIONS OF M E C H A N I C A L  SYSTEMS 

The ordinary differential equation of free oscillations of a linear dissipative mechanical system has the 
form 

M Y  + CYc + Kx  = 0 (4.1) 

with specified initial coordinates and velocities x0 and k0. The matrices M, C and K do not necessarily 
satisfy the usual properties of symmetry and sign-definiteness [8, 9]. 

Two methods of reducing the second-order matrix ordinary differential equation (4.1) to a first-order 
matrix ordinary differential equation of double dimensionality are known. In the first method, after 
introducing the additional variables y = k, ordinary differential equation (4.1) can be reduced to an 
ordinary differential equation of the form [10, 11] 

= Az ,  z = [Ix r,yr[[r (4.2) 

To obtain the 2n x 2n matrix A it is necessary to invert the matrix of the masses M. For simple 
eigenvalues of the matrixA, the solution of ordinary differential equation (4.2) can be represented by 
a linear combination of solutions of the form e~k%k, where ~,k are the eigenvalues of the matrixA and 
~k are the eigenvectors corresponding to them. In the case of multiple eigenvalues there will additionally 
be polynomial coefficients in t. In the second method, ordinary differential equation (4.1) is reduced 
to the form 

A ~ + B z  = 0 

where A and B are 2n x 2n matrices. The advantage of this method is the fact that the matrices A and 
B turn out to be symmetrical and inversion of the matrix M is not required. 

In this section the method developed in Section 3 for first-order linear matrix ordinary differential 
equations is extended to a second-order ordinary differential equation of the form (4.1) without reduction 
to first-order equations. 
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Just as in Section 2, the matrix ~,2M + ~C + Kwill be called the characteristic matrix, its determinant 
P(~,) will be called the characteristic polynomial, and the transposed matrix of its cofactors Q(~,) will 
be called the characteristic adjoint matrix 

2n 

P(~,) = det(~,ZM + ~,C + K )  = Z ki~, 2n-i  

i=O 

2 n - 2  

Q(~') = adj(~'ZM + ~'C + K )  = Z B i~ ' z " -2 - i  

i=O 

k 0 = detM, k2n = detK, B 0 = adjM, B2n_ 2 = adjK 

The quantities ko and Bo will be used as the initial conditions for the recurrence relations of Souriau's 
algorithm, adapted for solving ordinary differential equation (4.1). 

We will start by considering the algebraic part of the method, which we will divide into three steps. 
At the first step we use an identity similar to the first identity in formula (2.1), 

(~,2M + ~,C + K)Q(~ , )  = P(~ , ) I  (4.3) 

Equating coefficients of like powers of ~, we arrive at 2n + 1 relations between the coefficients ki 
and B i 

M B  o = ko l ,  M B  I + C B  o = k l l ,  

M B  2 + C B  I + K B  o = k21 . . . . .  MB2n_2 + CB2n_3 + KB2n_4 = kzn_2 I,  (4.4) 

C B ~ , _ z  + KBzn_  3 = k 2 n _ l l ,  K B 2 , _ 2  = k2,1 

At the second step, by calculating the trace of the matrices on the left- and right-hand sides of relation 
(4.4), we obtain the following 2n + 1 scalar relations 

tr(MB0) = nk  o, t r ( M B l ) + t r ( C B  o) = nk  I 

tr(MB 2) + tr(CB l) + tr(KB 0) = nk  2 . . . .  (4.5) 

. . . .  t r ( C B 2 n _ z ) + t r ( K B 2 n _ 3 )  = nk2n_ 1, t r ( K B 2 n _  2) = nk2n 

At the third step, using the property of the characteristic matrix 

P'(~,) -- d(det(~,2M + ~,C + K)) = tr(Q(~,)(2~,M + C)) 
a/~, 

we obtain 

2nko~2n- I  + ( 2 n -  1)kl~, 2n-2 + ... + 2kzn_2 ~, + k2n_ 1 = 

= tr(2MB0)~,2"-I + tr(2MB l + CBo)~ ,2" -2+ ... + 

+ t r (2MB/, -2  + CB2,-3)~, + tr(CB2,-3) 

Equating coefficients of like powers of ~, in relation (4.6), we obtain 

2 n k  o = 2tr(MB0), ( 2 n - 1 ) k  I = 2 t r ( M B 1 ) + t r ( C B o )  . . . .  

. . . .  2kn_ 2 = 2 t r ( M B n _ z ) + t r ( C B 2 n _ 3 ) ,  kzn_ I = tr (CB2n_2 ) 

(4.6) 

(4.7) 
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Comparing equalities (4.4), (4.5) and (4.7), to calculate the coefficients ki and B i for the specified 
parameters n, M,  C and K we obtain the following recurrence relations for i = 2, . . . ,  2n 

k i = ( t r ( C B i _ l ) + 2 t r ( K B i _ 2 ) ) / i ,  B i = B o ( k i l - C B i _ l - K B i _ 2 ) / k  o 

with initial conditions 

k 0 = detM, k I = tr(CB0), B 0 = adjM, B 1 = B o ( k l l - C B o ) / k  o 

Here, for brevity, we have supplemented the zero matrices B2n-1 = B2n = 0. 
We will now present a numerical computation of the solutions ~(t). In algebraic identity (4.3) we replace 
by d/dt and compute the numerical solution T(t) of the ordinary differential equation 

/ ~ )  " P ~ T = koy(2n)+klT (2n- +k2"/(2n-2)+ -.. +k2n-2"~(2)+k2n-l 'y(l)+k2n~ = 0 (4.8) 

Then the matrix 

~  = dtt "Y = B~ 2) + Bl ~[(2n- 3) 

will satisfy the ordinary differential equation 

+ . . .  + B 2  n _ 3T(1) + B2  n _ 2"~ 

satisfy the initial conditions 

_ (2n-k) . . . .  (2n-3),,, ~/~l)(0) 7k(0) 0 (4.10) ,/~2"-3+k)(0) = 1, 7k to) = Xk ~") . . . . . . .  

i.e. the initial data is both sets are zeros, with the exception of unities for the leading derivative of order 
(2n - 2) in the first set and for the derivative of order (2n - 1) in the second set. Then the matrix solutions 
of ordinary differential equation (4.9) 

~1(t) = ~ TI; r = Q ~-~ ~/2 

We will represent the general solution of ordinary differential equation (4.1) by a linear combination 
of two linearly independent solutions, which can be obtained by choosing two sets of initial conditions 
(for k = 1 and k = 2) for T(t), 

•1(0) = B0, r = BI,  r  = 0, r = e 0 (4.11) 

The solution of ordinary differential equation (4.1) can be represented in the form 

X(t) = I~l(/)l) 1 + (~2(t)I)2 

where the constant vectors vl and v2 are found from the equations 

BoO ~ = x 0, B lOl+B0o 2 = ~c o 

Taking the relation B0 = adjM into account, we obtain for Vl and v2 

o, = ~ M x  o, 0 2 =  ~0M(~o-BlOl) (4.12) 

The solutionx(t) was obtained in the time interval [0, h]. Just as in the case of the first-order matrix 
ordinary differential equation, this solution can be continued to the time interval [0,ph] for any integer 
p using the algebraic relation 

M~ + Cr + K* = 0 (4.9) 
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(~-~oO(t)W) p= ~~oO(pt)W(t) 

�9 (t) = 01(0 d~2(t) , W = 
~(ll)(t) ~)~1)(/) 

M 0 

-~MBIM M 

(4.13) 

Thus, the algorithm for obtaining a general solution of ordinary differential equation (4.1) consists 
of the following steps. 

1. Calculate ki and B i using Souriau's algorithm, adapted for an equation of the form (4.1). 
2. Find the functions 71(0 and 72(0 by numerical integration of ordinary differential equation (4.8) 

with initial conditions (4.10) in the short time interval [0, h]. 
3. Tabulate the matrix functions ~h(t) and ~2(t) in the time interval [0, h]. 
4. Extend the tabulation 3 to the time interval [0,ph] using formula (4.13). 
5. Calculate Vl and v2 from formula (4.12). 
6. Tabulate the solution x(t) = ~l(t)~)l -I- ~)2(t)~o2 . 

5. F O R C E D  O S C I L L A T I O N S  OF M E C H A N I C A L  S Y S T E M S  

Forced oscillations of a linear dissipative mechanical system with n degrees of freedom are described 
by ordinary differential equation (1.1) with a t ime-dependent right-hand side. We obtain a solution by 
the method of Lagrange variation of the arbitrary constants vl and v2, considering them as functions 
of time 

x(t) = ~l(t)1)l(t) + ~2(t)1)2(t) (5.1) 

Here we use the algorithm from Section 4 up to step 3, in which the functions (~1 and 02 are determined. 
As usual, we connect the derivatives vl and v2 by the additional condition 

Then 

Oll)l + I~202 = 0 (5.2) 

97(t) = ~l(t)1)l(t ) + ~2(t)1)2(t ) (5.3) 

Differentiating Eq. (5.2), we obtain 

~l~)l +1~21)2 = - -+101- -+202  

Putting t = 0 in relations (5.1) and (5.3) and taking the initial conditions (4.11) into account, we obtain 
two relations between the initial data for Vl, v2 and x 

X 0 = B01)I(0),  9? 0 = BI1)I(0 ) + BO1)2(0 ) (5.4) 

From this we obtain 

1 1 
v | (0)  = ~Mx o, 1)2(0 ) = -~.-oM(9?o-Bl1)l) " (5.5) 

To determine the functions Vl(t) and v2(t) it remains to integrate the following system of linear ordinary 
differential equations 

Oli)l +~21)2 ----- 0, M~lb I +Mt~202 = F(t) (5.6) 

or in partitioned matrix form 

~  ,i~ II II ~  ,t,~  57, 
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Using the adjoint matrix and the determinant, we obtain 

adjG i~ = d--~-~ 

or, after integration, 

t 

c a d j G ( s ) . . . .  
1)(t) = u(o) + j ~ q ,  as 

0 

Finally, the solution of ordinary differential equation (1.1) has the form 

x ( t )  = [[~l(t), ~z(t)l[ l)(t)  

843 

(5.8) 

(5.9) 

(5.10) 
The effectiveness of the proposed algorithms was verified by investigating actual linear oscillatory 

systems with symmetrical and asymmetrical matrices of the coefficients. 
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